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Abstract
Species Distribution Models (SDMs) have become increasingly useful for conservation issues. Initially designed to predict distributions
of species from incomplete datasets, SDMs may also identify environmental conditions associated with higher occurrences and
abundances of widely distributed taxa. Using sighting records of 15 widely distributed mammals from French Guiana, including
primates, carnivores, rodents and ungulates, we used  three SDMs --based on (i) entropy, (ii) genetic algorithm, (iii) Mahalanobis
distance -- to investigate relationships between species occurrence and predictive variables such as vegetation, biogeographic units,
climate, and disturbance index. Maximal entropy procedures resulted in more accurate projected conditions: the accuracy of the
predicted distributions was higher than 90% in nine species among the 15 tested, and predicted occurrences were correlated to field-
measured abundances for nine species. The Genetic algorithm implemented with GARP had lower accuracy, with predicted
occurrences correlated to abundances for three species only. Finally, Mahalanobis distance had a much lower performance and failed
to find any correlation between occurrences and abundances. In the case of MaxEnt modelling, since map projection summarized
more appropriate environmental conditions and identified areas  likely to act as sources and/or corridors, we propose to use those
appropriate environmental conditions as a proxy of conductance for landscape connectivity planning. We provide evidence here that
SDMs can identify not only more suitable environmental conditions, but also areas hosting higher abundances for a large set of
species with key ecological roles. Further management applications of this environmental suitability index could help in designing
corridors between protected areas.
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Introduction
Understanding patterns in the spatial distribution of biodiversity and ecological connectivity is key to
the development of effective conservation strategies [1-3]. Ranking the priority of areas that may
provide sources and corridors is nevertheless challenging. Beyond powerful modelling processes [4],
the selection of adequate field information is crucial. Input data may rely on expert knowledge [5],
endemism [6], richness, distribution, abundances, and population trends of focus species [7,8].
Biological indicators might also involve sets of more common species, which may identify not only
areas hosting rare, flagship, umbrella, and/or Red List classified taxa [9,10], but also those with various
ecological roles [11,12]. Therefore, identifying areas of higher abundances could help to ensure the
maintenance of ecological processes, which can also provide sources for neighbouring depleted
regions. Abundances of species are nevertheless difficult to assess on wide geographical scales, due to
unevenly distributed ecological conditions and local variations in response to specific niche
requirements [13].

Species Distribution Models (SDMs) are increasingly useful in a wide set of disciplines, including
ecology, evolution science, conservation, and the management of species [14]. SDMs assume that
species’ occurrence is determined by an immediate response of individuals to geographic and/or
temporal environmental variations [15]. SDMs can therefore identify more appropriate environmental
conditions (sensu [16]), in which species not yet surveyed or recorded are more likely to be present
than in other areas. Although initially designed to assess predicted distribution maps from incomplete
datasets (e.g., [17]), SDMs have shown their usefulness for other issues, such as the prediction of exotic
species invasions [18], the monitoring of declining species [19], the prediction of range expansions of
recovering species [20], the assessment of the impact of climate change [21] and likelihood estimates
of species’ long-term persistence [22]. However, the occurrence of species may nevertheless be of
insufficient value for conservation planning [23], because overall abundances have much greater value
for macroecological approaches [24], and as indicators of population trends [25].

A surrogate for assessing species densities could be based on the expected relationships between the
probability of species occurrence and their abundances [26,27]. SDMs produce geographic projections
that indicate where species are more likely to occur, on the basis of relationships between records and
ecological conditions [28]: the models are expected to reflect the niche requirements of the species,
and consequently the environmental conditions associated with higher species performance [29].
Habitats with higher numbers of collected observations are likely associated with higher densities [30-
32].

Relationships between predicted habitat suitability and species dynamic traits have not been largely
investigated, but thanks to the recent developments of SDMs [33], this approach has received
increasing interest. Occurrence models have been tested as indicators of the variation of abundances
of several plants [29], vertebrate species [34] and top predators [35,36]. Our general objective was to
evaluate how SDMs could help to identify areas of importance for the maintenance of large-scale
ecological dynamics, including both areas of higher richness, and corridors facilitating movements
among them. Landscape permeability to species migration is not only explained by physical
constraints, but also strongly influenced by bioecological characters of species [37]: habitat suitability
resulting from SDMs may reflect some of the species' response to habitat variation, as well as the
efficiency of migration areas.

Our study used the predicted occurrences of a large set of common and widely distributed large forest
mammals in French Guiana, acting as a surrogate for key ecological processes [12] with three specific
objectives:
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1. Testing the accuracy of Species Distribution Models in identifying more appropriate environmental
conditions for a set of widely distributed forest mammals;
2. Testing how those environmental conditions correlate to field-measured abundances;
3. Proposing those environmental conditions to identify key areas for long-term conservation of
species and for modelling habitat connectivity, the gradient of predicted occurrence being considered
a proxy for the permeability of the habitats to movements by the species of interest.

Methods
Study area
The work took place in French Guiana, a French administrative unit of 84,000 km2 in the northern part
of South America, on the Guiana shield (Fig. 1). The Guiana shield is one of the largest pristine
Neotropical rainforest blocks and a floristically distinctive province compared to the Amazonian basin
[38]. Eighty percent of French Guiana is covered by moist upland forests on well-drained lateritic and
oligotrophic soils over altitudes between 0–600 m. The alluvial coastal plain is rather narrow on this
part of the Guiana shield [39], covered by marsh forests, savannahs, transition forests, and herbaceous
swamps and is rather narrow on this part of the Guiana shield [39]. Compared to other Neotropical
countries, the forest conservation status of eastern Venezuela, Guyana, Suriname, French Guiana, and
the Brazilian states of Amapá and Para is still rather favourable. French Guiana benefits from an
extensive network of protected areas, including five Nature Reserves located in patches in the
northern half of the country, and a National Park in the south, for a total protected area of 23,000 km²
(>25% of the country).

Fig 1. The study site, with the all-species
set of records used for the modelling
(black dots), and the areas where field
surveys were implemented for
assessments of abundances (red dots).
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Model of occurrence
A set of 15 mammalian species from the orders of Primates, Carnivora, Rodentia, Perissodactyla and
Artiodactyla was studied (Table 1). Determining the absence of large species in tropical forests is
almost impossible because of low densities, cryptic behaviours, and dense, close habitats.
Consequently, records of presence-only were included. Data considered in this work have two origins.
First, we conducted surveys in the country for 15 years, both to assess impacts of anthropogenic
activities such as logging, hunting, and fragmentation, and to assess variations of densities in non-
disturbed areas [12,40]. As well as estimating richness and abundances of target species (see below),
our surveys recorded the presence of a large set of species. Second, bona-fide sighting records
reported by naturalist volunteers, managed in a database by one of us (FC), were included. We only
considered records from experienced observers, with associated geographic coordinates and/or site
description allowing an estimate of the location with an error < 1 km². Total numbers of records per
species ranged from n=63 (Red acouchy, Myoprocta acouchy) to n=358 (Brazilian tapir, Tapirus
terrestris) (Appendix 1a). Fig. 1 shows the distribution of all records, and the areas where field
samplings were implemented

Considering the discrepancies among different SDMs (e.g., [36]), three models were used to investigate
the distribution of occurrences. First, maximum entropy analysis has a recognized efficiency in
processing presence-only data and small data sets [41,42]. MaxEnt3.3.3k [43] estimates the probability
distribution of the maximum entropy of each environmental variable with the study area. This
occurrence distribution is calculated with the constraint that the expected value of each environmental
variable under this estimated distribution matches the empirical average generated from
environmental values associated with species occurrence data [43]. When MaxEnt is applied to
presence-only species distribution modelling, the pixels of the study area make up the space on which
the MaxEnt probability distribution is defined, pixels with known species occurrence records constitute
the sample points, and the features are environmental variables. To control the likely geographic bias
of sightings distribution (i.e., trapping effort), the model was forced to use environmental layers
restricted to the areas of sampling during the learning stage [44]. Predicted areas of occurrence were
then projected at the country scale. The model was run using 75% of the records for training and the
remaining 25% for testing, and 5,000 iterations with a bootstrap replicate strategy; other parameters
were a 1.0 x 10-5 convergence threshold; logistic output format; and linear/quadratic regularization
values.

For each species, the model was run with 15 replicates and interpreted with the AUC test [45].
However, because the AUC test could lead to misinterpretation of model accuracy [46], the null model
hypothesis [47] was also used to test the performance of the predictions. We generated 99 random
distributions, and considered the 95th AUC value as the upper limit of the 95% C.I of AUC. Then, as soon
as the AUC value of one species was higher that this 95th ranked AUC, the accuracy of the SDM was
significantly higher than expected by chance alone with p<0.05. Once projected at a country-wide
scale, predicted appropriate environmental conditions are expressed as an index of suitability, a value
ranging from 0 (less favourable ecological conditions) to 1 (ideal conditions). Contribution of the
environmental variables on the model was investigated with both a permutation heuristic test, and a
jackknife test, implemented with MaxEnt.

Second, we used the Genetic Algorithm for Rule-Set Prediction (GARP, [48]). GARP searches for non-
random associations between environmental characteristics of sites of known occurrence versus those
of the overall study region. Basically, GARP works in an iterative process of rule selection, evaluation,
testing, and incorporation or rejection to produce a heterogeneous rule-set characterizing the species’
ecological requirements. As implemented here, the algorithm runs either 1,000 or until the addition
of new rules has no appreciable effect on the intrinsic accuracy measure (convergence limit of 0,01).
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The final rule-set, or ecological-niche model, is then projected onto the country-wide scale. Localities
of records were randomly divided into training (75%) and test (25%) data sets. For each species, 10
independent models were run; the ecological niche was obtained with superimposition of the runs,
with in a pixel-scale index ranging from 0: none of the 10 models identified the pixel as an area of
predicted occurrence, to 10: all the models identified the pixel as an area of predicted occurrence. For
each species, the performance of the model was evaluated with both extrinsic and intrinsic values.
First, a chi² statistic test was run on the mean (among the 10 models) of extrinsic values. Second, we
observed the mean of the intrinsic omission error, expected to be <5% in high quality modelling, and
the mean of the intrinsic commission index, expected to be > 67% [49].

Third, we used Mahalanobis Distance [50], a geometrical method based on set theory and distribution
profiles of presence data in environmental dimensions that also showed relevant results on the
occurrence of large vertebrates [51,52]. Mahalanobis distance (D²) is a multivariate dissimilarity
statistic, expressed as the standardized difference between the values of a set of environmental
variables and the mean values for those same variables calculated from all points at which a species
was detected [53,54]. A map of habitat suitability is created by calculating the D² values for each
landscape cell, with D² = (x-m)T C-1 (x-m) where x is a vector of landscape data associated with each
landscape square, m is a vector of means for the landscape data at all set squares, and C is a covariance
matrix of the landscape data at all squares. The procedure was implemented on ArcGis 9.3 with Land
Facet tools [55].

The predictive environmental data were the same for all  three models and were selected according
to the assumed pertinence of their interactions with the ecology of species [56,57] and to their
availability and homogeneous definition at the country scale: rainfall [58], mean altitude; range of
altitude [59]; vegetation types defined with high definition remote-sensing data and organized along
a reflectance gradient (dense forests have higher reflectance, while open (savannahs) and disturbed
areas show an opposite signature) [60]; biogeographic units [61]; and the human footprint
representing the distribution and strength of pressures on natural habitats [12].

Relationships between suitability derived from SDMs and field-measured abundances, and
environmental variables
To determine how projected environmental conditions reflect ecological conditions, the suitability
index was tested in relation to the abundance of species measured in the field, abundance being
considered a proxy for the quality of habitats [62]. Those abundances were measured for 14 species
(monkeys, large rodents, deers and peccaries) in 36 sites with a line-transect method, with a
standardized effort [63]. The abundance of tapirs was measured using a track index along a river-
transect (18 sites, mean survey distance = 20 km). The relationships between predicted environmental
suitability (for GARP, the suitability was set as the sum of the 10 models) and abundances were
examined using both Ordinary Linear Regression (OLS) and 90th quantile linear regression, in order to
consider the complex non-functional relationship between density and suitability [34,36].

Projected environmental conditions and landscape permeability
Landscape permeability was investigated at the country scale with CircuitScape 3.5 [64, which
describes every movement of an animal as a random choice and equally probable in all directions,
using the circuit theory [65]. CircuitScape considers the study area as networks of nodes (e.g., habitat
patches, populations) connected by edges. The weight of each edge is related to the strength of the
connection (e.g., number of dispersers) between the connected nodes. Predicting connectivity
requires first assigning resistances to different habitat types in the grid. Outputs from SDMs were used
as a measure of conductance (the reciprocal of resistance) in the study area: higher values of
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conductance indicate more suitable habitats, likely associated with more movements of target species,
i.e. with higher permeability. The nodes, supposed to act as source areas, were defined as all areas
located in protected areas and exhibiting index values above the natural break of index distribution,
defined with the optimized method [66] implemented in ArcGIS 9.3. We used pairwise comparison to
assess connectivity, calculated between all pairs of focal nodes. In order to allow the movement of
animals in every direction, cells were connected to their eight neighbours with the resistance between
a pair of first-order neighbours set to the mean of the two cells’ resistances, and the resistance
between a pair of second-order neighbours (diagonal) set to the mean resistance multiplied by the
square root of 2 in order to reflect the greater distance between cell centres.

Results
Spatial modelling of the distribution of target species
The AUC values of the MaxEnt model range from 0.745 to 0.853 (Appendix 1a); the reliability of the
null hypothesis that the accuracy of the SDM was significantly higher than expected by chance was >
95% (p<0.05) for seven species among the 15, and was > 90%  (i.e., p<0.1) for two other species
(Appendix 1a). As examples, the distribution of more suitable environmental conditions for the black
spider monkey (Ateles paniscus) and for the Brazilian tapir (Tapirus terrestris) (Fig 2). Fig. 3 shows the
superimposition of habitat suitability for the nine species with a prediction relevance > 90% (null
hypothesis test).

Fig. 2. Predicted maximal entropy-based occurrences of an arboreal species, the black spider monkey
Ateles paniscus (up) and a terrestrial species, the Brazilian Tapirus terrestris (low). The gradient of
colors from light to dark illustrates the gradient of more appropriate environmental conditions (light =
favourable; dark = adverse).
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The two other models had much lower performances. With GARP, the extrinsic measure of overall
model performance (chi² test) was significant in all species but one. But among the more stringent
estimators, no intrinsic omission error was below 15%, and the intrinsic commission index was above
the expected value (67%) in three species only (Appendix 1b). The Mahalanobis models also show weak
performances, with very low AUC values and no significant null hypothesis test (Appendix 1c).

Fig. 3. Superimposition of the predicted
maps (maximal entropy method) of 9
species with accuracy of null-hypothesis
test > 90%. The gradient of colours from
light to dark illustrates the gradient of
more appropriate environmental
conditions (light = favourable; dark =
adverse). Hatched areas: protected
areas (Nature reserves and National
park).

Predicted suitability, measured abundances and the role of environmental variables
With MaxEnt, Ordinary Linear Regression (OLS) and quantile regressions show that, for nine of the 15
species, abundances were correlated to predicted environmental suitabilities derived from MaxEnt
modelling (Appendix 1a). Among the five environmental layers, the biogeography explained most of
the geographic variation of the occurrences (Appendix 2, Fig. 4).The important contribution of the
human index has to be considered, at least partially, as a spurious effect resulting from the distribution
of sightings significantly influenced by overall disturbance. Due to the inaccessibility of large parts of
the country, sighting records were often located in, or close to, areas with potential sources of
disturbance (i.e., forest tracks and large rivers which also allow easy access to hunters), with
consequently a positive, although low, disturbance index (see [12] for details). Hopefully those effects
were mitigated by the projected distribution maps (see Material and Methods). Among other layers,
mean altitude explained most of the remaining variation, although vegetation, rain and altitude range
have a restricted contribution (Appendix 2). Detailed contributions of those three main variables
(biogeography, disturbance index, and mean altitude) are shown in Appendix 3 for the nine above-
mentioned species.

With GARP, regressions show positive and significant trends between index and abundance in three
species only, although the models of those species were not associated with relevant omission and
commission values (Appendix 1b). Regressions between abundances and habitat index defined with
Mahalanobis modelling failed to detect any significant relationships (Appendix 1c).
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Predicted environmental conditions and landscape permeability
Considering the lower performances of both GARP and Mahalanobis models, projected habitat
conditions of MaxEnt only were used to map landscape permeability. The gradient of landscape
permeability among the nodes of interest is shown in Fig. 5 for the nine species with a prediction
relevance > 90%. A large single latitudinal corridor is shown, which will likely facilitate the flow of target
species from the large refuge areas of the National Park toward the northern nature reserves.

Fig. 4. Contribution of predictive environmental variables to predicted environmental suitability. Biogeography stands for landscape
units. For each mammalian species, the first column is for heuristic permutation test, and the second column for Jackknife test.

Discussion
In this study, we explored how the Species Distribution Model could predict a gradient of
environmental conditions for a set of forest-dwelling Neotropical mammals, and how those predicted
environmental conditions are correlated to field-measured abundances. The objective was to
contribute to the development of those models in understanding geographic variation of the densities
of species [31,35,36], and in supporting conservation planning in a dynamic perspective [30].

Performance of the models
Few studies have evaluated relationships between abundances and habitat suitability derived from
SDMs. On the basis of ca. 2,000 ad libitum records from 15 species and 36 surveys implemented to
measure abundances, we show that even with geographically-biased sampling, Entropy-based SDMs
can predict environmental conditions correlated to abundances of a large set of species, including four
primates, three ungulates, one rodent and one carnivore.
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Of the models, MaxEnt clearly led to better accuracy than the Mahalanobis distance-based model and
the Genetic algorithm for rule set predictions, on the basis of both statistical tests on modelled
accuracies, and on the relation between field recorded abundances and predicted environmental
conditions. Maximum entropy models have already provided relevant predictions of most appropriate
conditions for species occurrence [34,67,68], but were of less value in predicting variations in the
abundance of jaguars although GARP resulted in intermediate accuracies [36], as in our study.

The performance of the MaxEnt model and strength of the adequacy between predicted conditions
and field validations nevertheless vary among species (Appendix 1a and 2). Fig. 6 shows the respective
variations of abundances (expressed as Standard Deviation of abundance / Mean of abundance, in
order to control for discrepancies among abundances of species) and suitability recorded from the 36
survey sites. As previously shown [34,36], although many species show both low variations of
abundances and suitability, reflecting rather low ecological requirements, others show either
important variation of abundance, but low variation of suitability (the south American coati Nasua
nasua, the red-rumped agouti Dasyprocta leporina, the collared peccary Pecari tajacu) or the opposite
pattern (the wedge-capped capuchin Cebus olivaceus). We also found that the black spider monkey
Ateles paniscus has both important variation of abundances and predicted habitat suitability, likely
indicating a higher level of ecological specialization and clear patterns of habitat preferences.

The roles of input variables, models used, target species, and specific traits can be evoked. Considering
environmental variables used in the model processes, we detected a Wallacean shortfall, and for some
species the human footprint is a more suitable positive explicative variable. Species-sightings are
spatially biased by the human footprint index: places where people are more abundant will also be the
places where more sightings will be recorded [68]. On the other hand, abundances of large species
recorded with a standardized protocol show a decline when the footprint increases, since many
primates and ungulates are game species [12,40]. This contradictory role of human footprint
complicates the assessment of the relation between abundances and occurrences for a set of species.
Other environmental variables of importance are landscape units and mean altitude (Table 2, Figure
3) which clearly (AUC>0.84) indicate some marked ecological preferences by black spider monkeys
(Ateles paniscus) and wedged-capped capuchins (Cebus olivaceus) for hilly forests, and key roles of
riparian and low altitude forest for the squirrel monkeys (Saimiri sciureus) (data not shown). In
contrast, the distribution of sightings of some other species (e.g., the red howler monkey Alouatta
macconnelli, the white-faced saki Pithecia pithecia, the golden handed tamarin Saguinus midas, which
all have a non-significant null hypothesis test, and/or low AUC values) was not explained by SDM
analysis. This suggests the need for considering other environment variables, as soon as those become
available at the scale of the study area.

Specific traits may influence the performance of the modelling. In birds, the shape of the relation
between measured abundances and expected occurrences is explained by the breeding system [35].
The importance of traits has also been raised in plants [29,69]. We failed to explain the difference in
model performance with bioecological patterns of species such as density, lifespan, diet, rank on
trophic chains, and plasticity (data not shown). Also, the dispersal of species responses (Fig.6) was not
related to the relationship between abundance and suitability, highlighting the complexity of biotic
and abiotic interactions and the importance of cryptic factors not considered, such as local climatic
conditions, phenology, or local threats with short-time impacts on populations: environmental
suitability has to be understood as an upper, or optimal proxy of density, rather than an indicator of
immediate abundance [34].
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Although for some species no relation was found between the index of suitability and abundances, this
may not weaken the relevance of predicted areas. Those results raise questions about the relevance
of abundance as assessed in a single survey, the bias in the detection of some species by a naturalist
network, and the biological significance of the environmental variables tested. At least for species with
high AUC values (i.e., > 0.8, collared peccary Tayassu  pecari, south American coati Nasua nasua, and
red acouchy Myoprocta acouchy, see Table 1), the absence of a positive relationship between
suitability and abundance may highlight the difficulty of assessing densities in tropical forests, which
often requires a larger survey effort than the one deployed for our own assessments of abundances
[63].Moreover, cryptic and elusive species may bias sighting databases [70]. In our own field
experience, the red acouchy Myoprocata acouchy and the white-faced saki Pithecia pithecia are
difficult to detect in the field and seldom reported by volunteer naturalists, likely influencing
performance of the models. Last, the roles of environmental variables on recorded abundances, which
show some inconsistencies with variables explaining predicted suitability (Appendix 2), suggest the
limits of our procedure when considering density as an indicator of habitat quality [71].

Fig. 5. Landscape permeability mapped for French
Guiana, illustrating the gradient of more appropriate
environmental conditions (light = favourable; dark =
adverse) for movements of species of interest
between nodes (see material and methods). Hatched
areas: protected areas (Nature reserves and National
park). Dotted points: reservoir of the Petit Saut
hydroelectric dam (excluded from modelization).

Fig. 6. Variability of field-measured abundances ("abond") and associated
predicted environmental suitability ("suitab") on 36 sites, for 15 species. AMA
= Alouatta macconnelli (red howler monkey), APA = Ateles paniscus (black
spider monkey), CAP = Cebus paella (brown capuchin), COL = Cebus olivaceus
(wedge-capped capuchin), DLE = Dasyprocta leporina (red-rumped agouti) EBA
= Eira Barbara (tayra) MAC = Myoprocta acouchy (red acouchy), MAM =
Mazama americana (red brocket deer), MGO = Mazama nemoviraga (grey
brocket deer), NNA = Nasua nasua (south American coati) PPI = Pithecia
pithecia (white-faced saki), SMI = Saguinus midas (golden-handed tamarin),
SSC = Saimiri sciureus (common squirrel monkey) PTA = Pecari tajacu (collared
peccary), TTE = Tapirus terrestris (Brazilian tapir)
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Implications for conservation
Despite a relevant protected area network and a voluntary environmental policy, the continuous
increase of demographic pressures combined with a gold rush [72] are serious threats to terrestrial
and aquatic biodiversity in French Guiana [12,73,74], raising urgent questions about the adequacy and
optimization of conservation strategies. SDMs are assumed to predict environmental conditions
associated with higher occurrences of the species as well as with their performance [29]. Pinpointing
areas where more appropriate environmental conditions exist is vital for the planning of conservation
projects, in order to maintain the diversity of ecological processes, to preserve high densities of
species, and to continue ecological connectivity.

The species studied here have various ecological roles, such as seed disseminators and predators.
Consequently, they provide a relevant view of the large mammal community and are a proxy for main
ecological processes. The superimposition of the nine more relevant models can be a valuable tool for
identifying key areas and help to design new protected areas [75]. Also, identification of functional
corridors joining those protected areas requires mapping the permeability of the landscape in relation
to the movements of the species. Landscape connectivity is understood as the "degree to which the
landscape facilitates or impedes movement among resource patches" [76], and as the "functional
relationship among habitat patches, owing to the spatial contagion of habitat and the movement
responses of organisms to landscape structure" [77]. On the basis of predicted occurrences, one can
assume that areas identified as less adequate by the SDMs may provide resistance values to assess the
ecological costs of movements between patches [4]. This uses predicted environmental suitability in a
dynamic way, as an input to assess landscape permeability. Together with ecological benefits, policy
issues are important. This tool can help land planning management, when strategic information (e.g.,
threats, projections of infrastructures) can easily be superimposed with ecological constraints to
determine conservation costs and social and political acceptability.

Some limits have nevertheless to be considered. First, we did not include all protected areas as nodes,
but only areas above a threshold that needs to be better confirmed, since we saw that higher suitability
values may not be associated with higher observed densities and may consequently bias the
identification of nodes. Second, in such a dynamic approach, a regional perspective is needed, and
surrounding areas of corridors, sources and sinks would definitively need to be determined.

Together with continuous theoretical improvements, Species Distribution Models are increasingly
used for conservation science [33]. Although for some species our results may raise the question of
measured abundance or predicted suitability as the most relevant proxy for "species performance"
(sensu [29]), our application of SDMs has conservation interest, contributing to more relevant
networks among areas of importance. Outcomes of projected and validated ecological conditions can
identify areas acting as sources and corridors, and provide original conductance and/or resistance
values for landscape connectivity modelling, Also, we have shown that even very rough information
(i.e., opportunistic records of species presence) from networks of local naturalists and citizen
participants [78,79] may be properly analysed through SDMs, and therefore be useful for conservation
planning.
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Appendix 1a. Accuracy of MaxEnt modelling to explore environmental suitability for 15 large mammals in
French Guiana: test AUC values, significance of the null model test, and significance of the relation between
predicted environmental suitability and abundances measured in the field (36 sites). Taxonomy of mammals
follows [80]. n.s. = not significant.

AUC Null model Suitability vs abundance

Primates OLS 90th quantile regression

Saimiri sciureus (n=123)
Common squirrel monkey

0.853 p<0.05 p<0.05 ns

Ateles paniscus (n=137)
Black spider monkey

0.849 p<0.05 p<0.001 p<0.001

Cebus olivaceus (n=88)
Wedge-capped capuchin

0.847 p<0.05 p<0.05 p<0.05

Cebus apella (n=143)
Brown capuchin

0.780 p<0.1 p<0.001 p<0.001

Alouatta macconnelli (n=195)
Red howler monkey

0.750 ns ns ns

Pithecia pithecia (n=112)
White-faced saki

0.787 ns ns ns

Saguinus midas (n=176)
Golden-handed tamarin

0.745 ns ns ns

Ungulates
Tapirus terrestris (n=358)
Brazilian tapir

0.793 p<0.05 p<0.001 p<0.001

Mazama americana (n=90)
Red brocket deer

0.798 p<0.05 p<0.05 p<0.05

Mazama nemoviraga (n=83)
Grey brocket deer

0.792 ns p<0.05 p<0.05

Pecari tajacu (n=88)
Collared peccary

0.803 ns ns ns

Carnivores
Eira barbara (n=100)
Tayra

0.794 p<0.05 ns p<0.1

Nasua nasua (n=72)
South American coati

0.838 p<0.05 ns ns

Rodents
Dasyprocta leporina (n=141)
Red-pumped agouti

0.771 p<0.1 p<0.05 p<0.05

Myoprocta acouchy (n=63)
Red acouchy

0.837 ns ns ns
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Appendix 1b. Accuracy of GARP modelling (resulting from the sum of 10 independent models) to explore
environmental suitability for 15 large mammals in French Guiana: omission error (expected to be < 0.05, [49]),
commission index (expected to be > 0.67, [49], and significance of the relation between predicted
environmental suitability and abundances measured in the field (36 sites). Taxonomy of mammals follows [80].

Mean
omission error

Mean
commission
index

Suitability (sum of 10 independent
models) vs abundance

Primates OLS 90th quantile
regression

Saimiri sciureus (n=123)
Common squirrel monkey

0.15 0.74 ns ns

Ateles paniscus (n=137)
Black spider monkey

0.26 0.63 ns ns

Cebus olivaceus (n=88)
Wedge-capped capuchin

0.14 0.54 ns ns

Cebus apella (n=143)
Brown capuchin

0.22 0.58 ns ns

Alouatta macconnelli
(n=195)
Red howler monkey

0.23 0.57 ns ns

Pithecia pithecia (n=112)
White-faced saki

0.16 0.48 p=0.06 p<001

Saguinus midas (n=176)
Golden-handed tamarin

0.21 0.65 p=0.01 p<0.005

Ungulates
Tapirus terrestris (n=358)
Brazilian tapir

0.19 0.70 ns ns

Mazama americana (n=90)
Red brocket deer

0.26 0.62 ns ns

Mazama nemoviraga (n=83)
Grey brocket deer

0.22 0.60 ns ns

Pecari tajacu (n=88)
Collared peccary

0.26 0.55 ns ns

Carnivores
Eira barbara (n=100)
Tayra

0.18 0.69 ns ns

Nasua nasua (n=72)
South American coati

0.17 0.71 ns ns

Rodents
Dasyprocta leporina (n=141)
Red-pumped agouti

0.23 0.64 ns ns

Myoprocta acouchy (n=63)
Red acouchy

0.19 0.58 p=0.001 p<0.001
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Appendix 1c. Accuracy of Mahalanobis distance modelling to explore environmental suitability for 15 large
mammals in French Guiana: test AUC values, significance of the null model test, and significance of the relation
between predicted environmental suitability and abundances measured on the field (36 sites). Taxonomy of
mammals follows [80].

AUC Null model Suitability vs abundance

Primates OLS 90th quantile regression

Saimiri sciureus (n=123)
Common squirrel monkey

0.608 ns ns ns

Ateles paniscus (n=137)
Black spider monkey

0.518 ns ns ns

Cebus olivaceus (n=88)
Wedge-capped capuchin

0.514 ns ns ns

Cebus apella (n=143)
Brown capuchin

0.558 ns ns ns

Alouatta macconnelli
(n=195)
Red howler monkey

0.589 ns ns ns

Pithecia pithecia (n=112)
White-faced saki

0.566 ns ns ns

Saguinus midas (n=176)
Golden-handed tamarin

0.593 ns ns ns

Ungulates
Tapirus terrestris (n=358)
Brazilian tapir

0.529 ns ns ns

Mazama americana (n=90)
Red brocket deer

0.575 ns ns ns

Mazama nemoviraga (n=83)
Grey brocket deer

0.588 ns ns ns

Pecari tajacu (n=88)
Collared peccary

0.549 ns ns ns

Carnivores
Eira barbara (n=100)
Tayra

0.567 ns ns ns

Nasua nasua (n=72)
South American coati

0.502 ns ns ns

Rodents
Dasyprocta leporina (n=141)
Red-pumped agouti

0.616 ns ns ns

Myoprocta acouchy (n=63)
Red acouchy

0.594 ns ns ns
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Appendix 2. Contribution of each out of five predictive environmental variables of the best predictive model
(MaxEnt) to (i) predicted environmental suitability (first value: heuristic permutation test / second value:
Jackknife test); and (ii) variation of field-measured abundances, based on surveys of 15 mammals on 36 sites (*
= significant contribution – p<0.05 – of the variable)

Suitability Abundance

Primates 1 2 3 4 5 6 GLM / variables: 1 2 3 4 5 6

Saimiri sciureus
Common squirrel monkey

10/0.125 10/0.06 16/0.02 7/0.26 23/0.245 34/0.350 r²=0.389, p<0.005 *

Ateles paniscus
Black spider monkey

33/0.35 8/0.22 9/0.03 6/0.025 24/0.195 20/0.138 r²=0.399, p<0.01 * * *

Cebus olivaceus
Wedge-capped capuchin

38/0.26 3/0.08 2/0.05 4/0.055 31/0.360 22/0.245 ns

Cebus apella
Brown capuchin

18/0.04 6/0.02 18/0.05 5/0.02 26/0.090 28/0.120 r²=0.342, p<0.05 * * *

Alouatta macconnelli
Red howler monkey

22/0.025 8/0.02 17/0.03 6/0.023 27/0.080 20/0.075 r²=0.34, p<0.05 *

Pithecia pithecia
White-faced saki

5/0.03 10/0.02 14/0.05 11/0.05 31/0.125 29/0.130 r²=0.306, p=0.05 *

Saguinus midas
Golden-handed tamarin

20/0.03 10/0.02 7/0.02 5/0.02 30/0.090 28/0.090 ns

Ungulates
Tapirus terrestris
Brazilian tapir

19/0.11 11/0.08 19/0.03 6/0.04 20/0.155 25/0.190 r²=0.63p=0.05 * * *

Mazama american
Red brocket deer

14/0.06 3/0.02 6/0.03 11/0.045 37/0.019 29/0.014 ns

Mazama nemoviraga
Grey brocket deer

19/0.07 5/0.03 5/0.02 7/0.035 37/0.016 26/0.012 ns

Pecari tajacu
Collared peccary

9/0.1 10/0.07 11/0.09 7/0.065 28/0.250 35/0.190 ns

Carnivores
Eira barbara
Tayra

6/0.025 9/0.04 6/0.03 5/0.04 27/0.0145 46/0.310 ns

Nasua nasua
South American coati

7/0.025 7/0.06 7/0.05 7/0.05 35/0.198 37/0.270 ns

Rodents
Dasyprocta leporina
Red-pumped agouti

12/0.025 9/0.02 8/0.06 4/0.02 42/0.135 25/0.110 r²=0.378, p<0.01 *

Myoprocta acouchy
Red acouchy

9/0.06 5/0.02 7/0.07 5/0.045 44/0.245 31/0.180 ns

Environmental variables: 1=altitude mean, 2 = altitude range, 3=pluviometry, 4=vegetation type, 5=landscape
units (biogeography), 6=human footprint / human index (disturbance).
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Appendix 3. Contribution of the 3 variables explaining most of the variation of predicted occurrences
(biogeography, mean altitude, disturbance index) for, from up to low, the lowland tapir Tapirus terrestris, the
red brocket deer Mazama americana, the grey brocket deer M. nemoviraga, the red-rumped agouti
Dasyprocta leporina, the tayra Eira barbara, the black spider money Ateles paniscus, the brown capucin Cebus
apella, the white-capped capucin C. olivaceus, and the common squirrel monkey Saimiri sciureus.
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